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Abstract. We study time-bounded probabilistic reachability for Chem-
ical Reaction Networks (CRNs) using the Linear Noise Approximation
(LNA). The LNA approximates the discrete stochastic semantics of a
CRN in terms of a continuous space Gaussian process. We consider reach-
ability regions expressed as intersections of finitely many linear inequal-
ities over the species of a CRN. This restriction allows us to derive an
abstraction of the original Gaussian process as a time-inhomogeneous
discrete-time Markov chain (DTMC), such that the dimensionality of its
state space is independent of the number of species of the CRN, amelio-
rating the state space explosion problem. We formulate an algorithm for
approximate computation of time-bounded reachability probabilities on
the resulting DTMC and show how to extend it to more complex tem-
poral properties. We implement the algorithm and demonstrate on two
case studies that it permits fast and scalable computation of reachability
properties with controlled accuracy.

1 Introduction

It is well known that a biochemical system evolving in a spatially homoge-
neous environment, at constant volume and temperature, can be modelled as a
continuous-time Markov chain (CTMC) [18]. Stochastic modelling is necessary
to describe stochastic fluctuations for low molecular counts [14,16], when deter-
ministic models are not accurate [15]. Computing the probability distributions
of the species over time is achieved by solving the Chemical Master Equation
(CME) [25]. Unfortunately, numerical solution methods based on uniformisation
[4] are often infeasible because of the state space explosion problem. A more scal-
able transient analysis can be achieved by employing statistical model checking
based on the Stochastic Simulation Algorithm (SSA) [17], but to obtain good
accuracy large numbers of simulations are needed, which for some systems can
be very time consuming.
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A promising approach is to instead approximate the CTMC induced by a
biochemical system as a continuous state space stochastic process by means
of the Linear Noise Approximation (LNA), a Gaussian process derived as an
approximation of the CME [25]. Its solution requires solving a number of differ-
ential equations that is quadratic in the number of species and independent of
the molecular population. As a consequence, the LNA is generally much more
scalable than a discrete state stochastic representation and has been success-
fully used for model checking of large biochemical systems [12,7]. However, none
of these approaches enables the computation of global probabilistic reachabil-
ity properties, that is, the probability of reaching a particular region of the
state space in a particular time interval. This property is important not only
to analyse biochemical systems, for example to quantify the probability that a
particular protein or gene is ever expressed in Gene Regulatory Networks, but is
also fundamental for the verification of more complex temporal logic properties,
since model checking for CSL [2] or LTL [24] is reduced to the computation of
reachability probabilities.

Contributions. We derive an algorithm to compute a fast and scalable ap-
proximation of probabilistic reachability using the LNA, where the target region
of the state space is given by a polytope, i.e. an intersection of a set of linear
inequalities over the species of a CRN. More specifically, we compute the prob-
ability that the system falls in the target region during a specified time interval.
Given a set of k linear inequalities, and relying on the fact that a linear combina-
tion of the components of a Gaussian distribution is still Gaussian, we discretize
time and space for the k-dimensional stochastic process defined by the particular
linear combinations. This permits the derivation of an abstraction in terms of
a time-inhomogeneous discrete-time Markov chain (DTMC), whose dimension
is independent of the number of species, since a linear combination is always
uni-dimensional, and ensures scalability, as in general we are interested in one
or at most two linear inequalities. This abstraction can then be used for model
checking of complex temporal properties [21,2,4]. In order to compute such an
abstraction, the most delicate aspect is to derive equations for the transition
kernel of the resulting DTMC. This is given by the conditional probability at
the next discrete time step given the system in a particular state. Reachability
probabilities are then computed by making the target set absorbing. We use our
algorithm to extend the Stochastic Evolution Logic (SEL) introduced in [12] to
enable model checking of probabilistic reachability of linear combinations of the
species of a CRN. We show the effectiveness of our approach on two case studies,
also in cases where existing numerical model checking techniques are infeasible.

Related work. Algorithms to compute the reachability probabilities over dis-
crete state space Markov processes are well understood [4]. They require compu-
tation of transient probabilities in a modified Markov chain, where states in the
target region are made absorbing. Unfortunately, their practical use is severely
hindered by state space explosion, which in a CRN grows exponentially with the
number of molecules when finite, and may be infinite, in which case finite pro-
jection methods have to be used [23]. As a consequence, approximate but faster



algorithms are appealing, in particular for CRNs, where it is not necessary to
provide certified guarantees on reachability probabilities. The mainstream solu-
tion is to rely on simulations combined with statistical inference to obtain esti-
mates [9]. These methods, however, are still computationally expensive. A recent
trend of works explored as an alternative whether estimates could be obtained
by relying on approximations of the stochastic process based on mean-field [6] or
linear noise [8,7,12]. However, reachability properties, like those considered here,
are very challenging. In fact, most approaches consider either local properties of
individual molecules [6], or properties obtained by observing the behaviour of
individual molecules and restricting the target region to an absorbing subspace
of the (modified) model [7]. The only approach dealing with more general sub-
sets, [8], imposes restrictions on the behaviour of the mean-field approximation,
whose trajectory has to enter the reachability region in a finite time.

Our approach differs in that it is based on the LNA and considers regions de-
fined by polytopes, which encompasses most properties of practical interest. The
simplest idea would be to consider the LNA and compute reachability probabil-
ities for this stochastic process, invoking convergence theorems for the LNA to
prove the asymptotic correctness. Unfortunately, there is no straightforward way
to do this, since dealing with a continuous space and continuous time diffusion
process, e.g., Gaussian, is computationally hard, and computing reachability is
challenging (see [10]). As a consequence, discrete abstractions are appealing.

2 Background

Chemical Reaction Networks. A chemical reaction network (CRN) C =
(Λ,R) is a pair of finite sets, where Λ is a set of chemical species, |Λ| denotes its
size, and R is a set of reactions. Species in Λ interact according to the reactions
in R. A reaction τ ∈ R is a triple τ = (rτ , pτ , kτ ), where rτ ∈ N|Λ| is the reac-
tant complex, pτ ∈ N|Λ| is the product complex and kτ ∈ R>0 is the coefficient
associated with the rate of the reaction. rτ and pτ represent the stoichiometry
of reactants and products. Given a reaction τ1 = ([1, 1, 0]T , [0, 0, 2]T , k1), where
·T is the transpose of a vector, we often refer to it as τ1 : λ1 + λ2 →k1 2λ3. The
state change associated to a reaction τ is defined by υτ = pτ − rτ . For example,
for τ1 as above, we have υτ1 = [−1,−1, 2]T . Assuming well mixed environment,
constant volume V and temperature, a configuration or state x ∈ N|Λ| of the
system is given by a vector of the number of molecules of each species. Given a
configuration x then x(λi) represents the number of molecules of λi in the con-

figuration and x(λi)
N is the concentration of λi in the same configuration, where

N = V · NA is the volumetric factor or system size, V is the volume and NA
Avogadro’s number. The deterministic semantics approximates the concentra-
tions of species over time as the solution Φ(t) of the rate equations [11], a set of
differential equations of the form:

dΦ(t)

dt
= F (Φ(t)) =

∑
τ∈R

υτ · (kτ
|Λ|∏
i=1

Φ
ri,τ
i (t)) (1)



where Φ
ri,τ
i (t) is the ith component of vector Φ(t) raised to the power of ri,τ ,

ith component of vector rτ . The initial condition is Φ(0) = x0

N . It is known that
Eqn (1) is accurate in the limit of high population [15].

Stochastic Semantics. The propensity rate ατ of a reaction τ is a function of
the current configuration x of the system such that ατ (x)dt is the probability
that a reaction event occurs in the next infinitesimal interval dt. We assume mass

action kinetics, therefore ατ (x) = kτ
∏|Λ|
i=1 ri,τ !

N |rτ |−1

∏|Λ|
i=1

(
x(λi)
ri,τ

)
, where ri,τ ! is the

factorial of ri,τ , and |rτ | =
∑|Λ|
i=1 ri,τ [1]. To simplify the notation,N is considered

embedded inside the coefficient k for any reaction. The stochastic semantics of
the CRN C = (Λ,R) is represented by a time-homogeneous continuous-time
Markov chain (CTMC) [15] (XN (t), t ∈ R≥0) with state space S, where in XN

we made explicit the dependence by N . XN (t) is a random vector describing
the molecular population of each species at time t. Let x0 ∈ N|Λ| be the initial
condition of XN then P (XN (0) = x0) = 1. For x ∈ S, we define P (x, t) =
P (XN (t) = x |XN (0) = x0). The transient evolution of XN is described by the
Chemical Master Equation (CME), a set of differential equations

d

dt
(P (x, t) ) =

∑
τ∈R
{ατ (x− υτ )P (x− υτ , t)− ατ (x)P (x, t)}. (2)

Solving Eqn (2) requires computing the solution of a differential equation for
each reachable state. The size of the reachable state space depends on the num-
ber of species and molecular populations and can be huge or even infinite. As a
consequence, solving the CME is generally feasible only for CRNs with very few
species and small molecular populations.

Linear Noise Approximation. The Linear Noise Approximation (LNA) is
a continuous state space approximation of the CME, which approximates the
CTMC induced by a CRN as a Gaussian process [25]. In [26], the LNA has been
derived as a linearized solution of the Chemical Langevin Equation (CLE) [19].
This derivation shows that the LNA is accurate if the two leap conditions on
the reactions are satisfied. The leap conditions are satisfied at time t if (i) there
exists an infinitesimal time interval dt such that the propensity rate of each re-
action is approximately constant during dt and if (ii) each reaction fires many
times during dt. It is possible to show that, assuming mass action kinetics, in
the limit of high volume these conditions are always satisfied. The LNA at time
t approximates the distribution of XN (t) with the distribution of the random
vector Y N (t) such that

XN (t) ≈ Y N (t) = NΦ(t) +N
1
2G(t) (3)

where G(t) = (G1(t), G2(t), ..., G|Λ|) is a random vector, independent of N ,
representing the stochastic fluctuations at time t and Φ(t) is the solution of Eqn
(1). The probability distribution of G(t) is then given by the solution of a linear
Fokker-Planck equation [26]. As a consequence, for every time instant t, G(t) has



a multivariate normal distribution whose expected value E[G(t)] and covariance
matrix C[G(t)] are the solution of the following differential equations:

dE[G(t)]

dt
= JF (Φ(t))E[G(t)] (4)

dC[G(t)]

dt
= JF (Φ(t))C[G(t)] + C[G(t)]JTF (Φ(t)) +W (Φ(t)) (5)

where JF (Φ(t)) is the Jacobian of F (Φ(t)), JTF (Φ(t)) its transpose, W (Φ(t)) =∑
τ∈R υτυτ

Tαc,τ (Φ(t)) and Fj(Φ(t)) the jth component of F (Φ(t)). We assume
XN (0) = x0 with probability 1; as a consequence E[G(0)] = 0 and C[G(0)] = 0,
which implies E[G(t)] = 0 for every t. The following theorem illustrates the
nature of the approximation using the LNA.

Theorem 1. [15] Let C = (Λ,R) be a CRN and XN the discrete state space
Markov process induced by C. Let Φ(t) be the solution of rate equations with
initial condition Φ(0) = x0

N and G be the Gaussian process with expected value
and variance given by Eqns (4) and (5). Then, for any t <∞ and N →∞,

N
1
2

∣∣∣∣XN (t)

N
− Φ(t)

∣∣∣∣⇒N G(t). (6)

In the above, ⇒ indicates convergence in distribution [5]. The LNA is exact in
the limit of high populations, but can also be used in different scenarios if the
leap conditions are satisfied [20,26]. To compute the LNA it is necessary to solve
O(|Λ|2) first order differential equations, and the complexity is independent of
the initial number of molecules of each species. Therefore, one can avoid the
exploration of the state space that methods based on uniformization rely upon.

3 Linear Noise Approximation of Reachability
Probabilities

We are interested in computing the probability that the CTMC induced by a
biochemical network enters a region of the state space at some time instant
between t1 and t2. In order to exploit the LNA, we will first discretize time for
the Gaussian process given by the LNA, with a fixed (or adaptive) step size h,
which we can do effectively owing to the Markov property and the knowledge
of its mean and covariance. As a result, we obtain a discrete-time, continuous
space, Markov process with a Gaussian transition kernel. Then, by resorting to
state space discretization, we compute the reachability probability on this new
process, obtaining an approximation converging to the LNA approximation as
h tends to zero.

At first sight, there seems to be little gain, as we now have to deal with
a |Λ|-dimensional continuous state space. Indeed, for general regions this can
be the case. However, if we restrict to regions defined by linear inequalities,
we can exploit properties of Gaussian distributions (i.e. their closure wrt linear
combinations), reducing the dimension of the continuous space to the number of



different linear combinations used in the definition of the linear inequalities (in
fact, the same hyperplane can be used to fix both an upper and a lower bound).
As typically we are interested in regions defined by one or two inequalities, the
complexity will then be dramatically reduced.

3.1 Reachability Problem: Formal Definition

Recall that, given a CRN C = (Λ,R) with initial configuration x0, its stochastic
behaviour is described by the CTMC XN . A path of XN is a sequence ω =
x0t1x1t1x2... where xi ∈ N|Λ| is a state and ti ∈ R>0 is the time spent in the
state xi. A path is finite if there is a state xk that is absorbing. ω(t) is the state
of the path at time t. Path(XN , x0) is the set of all (finite and infinite) paths of
the CTMC starting in x0. We work with the standard probability measure Prob
over paths Path(XN , x0) defined using cylinder sets [21].

We now formalize the reachability problem we want to solve. For a simpler
presentation, we restrict to a single linear inequality over the species. This still
covers many practical scenarios, in particular in systems biology. Next, we show
how to generalise the method to regions specified by the intersection of more than
one hyperplane, though the complexity of our method will grow exponentially
with the number of different hyperplanes, unless additional approximations are
introduced.

Definition 1. Let C = (Λ,R) be a CRN with initial state x0, fix vector of
weights B ∈ Z|Λ|, finite set of disjoint intervals I = [l1, u1] ∪ ... ∪ [lk, uk], k ≥ 1,
such that, for i ∈ [1, k], [li, ui] ⊆ R ∪ [−∞,+∞], and an interval [t1, t2] ⊂ R≥0.
The reachability probability of B-weighted linear combination of species falling
in the target set I in time interval [t1, t2], for initial condition x0, is

Preach(B, x0, I, [t1, t2]) = Prob{ω ∈ Path(XN , x0)|B ·ω(t) ∈ I, t ∈ [t1, t2]}. (7)

3.2 LNA and Dimensionality Reduction

In order to approximate the reachability probability in Eqn (7), we rely on the
LNA Y N (t) of XN (t) (Eqns (4) (5)). By Eqn (3), we have that the distribution
of Y N (t) is Gaussian with expected value and covariance matrix given by

E[Y N (t)] = NΦ(t)

C[Y N (t)] = N
1
2C[G(t)]N

1
2 = NC[G(t)].

Let B ∈ Z|Λ|, then ZN = B · Y N is a uni-dimensional process and for any t it
represents the time evolution of the linear combination of the species defined by
B over time. Furthermore, ZN (t) is also Gaussian distributed, being the linear
combination of Gaussian variables. In particular, ZN (t) is characterised by the
following mean and covariance:

E[ZN (t)] = BE[Y N (t)] (8)

C[ZN (t)] = BC[Y N (t)]BT (9)

Note also that the distribution of ZN depends on Y N only via its mean and
covariance, which are obtained by solving ODEs (4) and (5). This is the key
feature that enables an effective dimensionality reduction.



3.3 Time Discretization Scheme

We now introduce an exact time discretization scheme for ZN . Fix a small time
step h > 0. By sampling Y N at step h and invoking the Markov property,4 we
obtain a discrete-time Markov process (DTMP) Ȳ N (k) = Y N (kh) on continuous
space. Applying the linear projection mapping ZN to Ȳ N (k), and leveraging its
Gaussian nature, we obtain a process Z̄N (k) = ZN (kh) which is also a DTMP,
though with a kernel depending on time through the mean and variance of Y N .

Definition 2. A (time-inhomogeneous) discrete-time Markov process (DTMP)
(Z̄N (k), k ∈ N) is uniquely defined by a triple (S, σ, T ), where (S, σ) is a mea-
surable space and T : σ × S × N → [0, 1] is a transition kernel such that, for
any z ∈ S, A ∈ σ and k ∈ N, T (A, z, k) is the probability that Z̄N (k + 1) ∈ A
conditioned on Z̄N (k) = z. S is the state space of Z̄N .

In order to characterise Z̄N , we need to compute its transition kernel. This can
be done by computing fZN (t+h)|ZN (t)=z̄(z), i.e. the density function of ZN (t+h)

given the event ZN (t) = z̄.
Consider the joint distribution Y N (t), Y N (t+h), which is Gaussian. Its pro-

jected counterpart ZN (t), ZN (t+h) is thus also Gaussian, with covariance func-
tion cov(ZN (t), ZN (t+h)) = Bcov(Y N (t), Y N (t+h))BT , where cov(Y N (t), Y N (t+
h)) is the covariance function of Y N at times t and t + h. It follows by the lin-
earity of B that fZN (t+h)|ZN (t)=z̄ is Gaussian too, and to fully characterize it

we need to compute E[ZN (t + h)|ZN (t) = z̄] and C[ZN (t + h)|ZN (t) = z̄]. To
this end, we need to derive cov(Y N (t), Y N (t + h)). From now on, we denote
cov(Y N (t+ h), Y N (t)) = CY (t+ h, t) and cov(ZN (t+ h), ZN (t)) = CZ(t+ h, t).
Following [15], we introduce the following matrix differential equation

dΩ(t, s)

dt
= JF (Φ(t))Ω(t, s) (10)

with t ≥ s and initial condition Ω(s, s) = Id, where Id is the identity matrix of
dimension |Λ|. Then, as illustrated in [15], we have

CY (t, t+ h) =

∫ t

0

Ω(t, s)JF (Φ(s))[Ω(t+ h, s)]T ds. (11)

This is an integral equation, which has to be computed numerically. To sim-
plify this task, we derive an equivalent representation in terms of differential
equations. This is given by the following lemma.

Lemma 1. Solution of Eqn (11) is given by the solution of the following differ-
ential equations

dCY (t, t+ h)

dt
= W (Φ(t))ΩT (t+h, t)+JF (Φ(t))CY (t, t+h)+CY (t, t+h)JTF (Φ(t+h))

(12)

4The Gaussian process obtained by linear noise approximation is Markov, as it is
the solution of a linear Fokker-Planck equation (stochastic differential equation) [25].



with initial condition CY (0, h) computed as the solution of

dCY (0, s)

ds
= CY (0, 0 + s)JTF (Φ(s)).

Ω(t + h, t) can be computed by solving Eqn (10). Knowledge of CY (t, t + h)
allows us to directly compute CZ(t, t + h) = BCY (t, t + h)BT . Then, by using
the law for conditional expectation of a Gaussian distribution, we finally have

E[ZN (t+ h)|ZN (t) = z̄] =

E[ZN (t+ h)] + CZ(Z(t+ h), Z(t))C[Z(t)]
−1

(z̄ − E[ZN (t)])
(13)

C[ZN (t+ h)|ZN (t) = z̄] = C[ZN (t+ h)]− CZ(t, t+ h)C[ZN (t)]
−1
CZ(t, t+ h).

(14)

Note that the resulting kernel is time-inhomogeneous. The dependence on t is
via the mean and covariance of Y N , which are functions of time and define
completely the distribution of Y N .

3.4 Computation of Reachability Probabilities

In order to compute the reachability probability for the DTMP Z̄N (k), we
discretize its continuous state space, obtaining an abstraction in terms of a
discrete-time Markov chain (DTMC) ZN,D(k) with state space S. That is, the
states of the original Markov process are partitioned into a countable set of non-
overlapping sets. We assume an order relation between elements of each set and,
for each set, we consider a representative point, given by the median of the set. S
is given by the set of representative points. In particular, we partition the state
space of Z̄N in intervals of length 2∆z, where ∆z defines how fine our space
discretization is. A possible choice is ∆z = 0.5, which basically means S ⊆ Z.
For ∆z → 0 the error introduced by the space discretization goes to zero. How-
ever, when the molecular population is of the order of hundreds or thousands, it
can be beneficial to consider ∆z > 0.5, since a coarser state space aggregation
is reasonable.

Then, we solve the reachability problem on the resulting DTMC. For z′, z ∈
S, the transition kernel of ZN,D(k) is defined as

T (z′, z, k) =

∫ z′+∆z

z′−∆z
fZN (hk+h)|ZN (hk)=z(x)dx, (15)

where h is the discrete time step, assumed to be fixed for a simpler notation.
Finally, in order to compute the reachability of the target set I we make all the
states z ∈ I absorbing. That is, for z ∈ I

T (z′, z, k) =

{
1 if z′ = z

0 otherwise

Algorithm 1 illustrates our approach for computing reachability probabilities.



Algorithm 1 Compute Time-Bounded Probabilistic Reachability

Require: A CRN C = (Λ,R) with initial condition x0, B ∈ Z|Λ|, a finite time interval
[t1, t2], a target set I and a threshold T H.

1: function ComputeReach(C, B, x0, I, [t1, t2], T H)
2: Set t = 0, S = {B · x0} and P (ZN,D(0) = B · x0) = 1
3: while t < t1 do
4: Compute time step h
5: for each z ∈ S do
6: Propagate probability at time t+ h and update S

7: for each z ∈ S do
8: if P (ZN,D(t+ h) = z) < T H then
9: S ← S − {z}

10: t← t+ h

11: while t < t2 do
12: Compute time step h
13: for each z ∈ S/I do
14: Propagate probability at time t+ h and update S

15: for each z ∈ S/I do
16: if P (ZN,D(t+ h) = z) < T H then
17: S ← S − {z}
18: t← t+ h

19: return Preach(B, x0, I, [t1, t2]) =
∑
z∈I P (ZN,D(t) = z)

In Line 1, we initialize the system at time 0. In the context of the algorithm,
S is a set containing the reachable states at a particular time with probability
mass greater than the threshold T H. T H equals 10−14 in all our experiments.
This guarantees that the algorithm always terminates in finite time even if the
state space is not finite. Initially, we have that S contains only one state B · x0.
Then, in Lines 3 − 10, we propagate the probability for any discrete step until
t < t1, as illustrated in [21]. For generality, we assume that the time step h is
chosen adaptively, according to the system dynamics. Propagating probability is
possible, as for any z′ ∈ S, T (z′, z, k), which has a Gaussian nature, defines the
probability of being in z′ in the next discrete time step by ZN,D(k) = z. From
Line 12 to 20, we compute probabilistic reachability Preach(B, x0, I, [t1, t2]) by
propagating the probability only for states that are not in I. When we reach
t ≥ t2, we have that Preach(B, x0, I, [t1, t2]) ≈

∑
z∈I P (ZN,D(t) = z|ZN,D(0) =

B · x0).

3.5 Correctness

The method we present is approximate. In particular, errors are introduced in
two ways: by resorting to the LNA and by discretisation of time and space of the
LNA. The quality of these two approximations is controlled by three parameters:
(a) N , the system size, which influences the accuracy of LNA, (b) h, the step
size, and (c) ∆z, the discretization step, which influences the quality of the
approximation of the reachability probability of the LNA.



Recall that XN and ZN,D are, respectively, the CTMC induced by a CRN
and the DTMC obtained by discretization of the LNA of XN for a particular
N . Fix B ∈ Z|Λ| and I, a set of disjoint closed intervals of reals, and denote
by PXN (B, t1, t2) and PZN,D (B, t1, t2), t1 < t2, the reachability probabilities for
ZN,D and XN . Then, we have the following result

Theorem 2. With the notation above, for t1 ≤ t2 <∞:

lim
N→∞

lim
h→0

lim
∆z→0

{|PXN (B, t1, t2)− PZN,D (B, t1, t2)|} = 0.

The convergence stated in Theorem 2 means that, since N is fixed for a given
CRN, that even if we have control over h and ∆z, the quality of the approxima-
tion depends on how well the LNA approximated the CRN. Error bounds would
be a viable companion to estimate the committed error, but we are not aware
of any explicit formulation of them for the convergence of the LNA. However,
experimental results in Section 5 show that the error committed is generally
limited also for moderately small N and quite large h.

3.6 Complexity

Complexity of the method depends on the following: (a) the equations we need
to solve, (b) the step size h, and (c) the space discretization step ∆z. Algorithm
1 requires solving Eqns (12) and Eqns (5), that is, a set of differential equations
quadratic in the number of species. In fact, solving these equations requires
computing JF , Jacobian of F . However, the number of equations we need to solve
is independent of the number of molecules in the system. This guarantees the
scalability of our approach. An important point is that Eqn (12) requires solving
Eqn (11) once for each sampling point of the numerical solution of Eqn (12).
A possible way to avoid this is to consider approximate solutions of Eqn (11),
which are accurate in the limit of h → 0. However, to keep this approximation
under control, h has to be chosen really small, slowing down the computation.
Moreover, for any sample point, Eqn (11) is solved only for a small time interval
(between t and t + h). As a consequence, in practice, the computational cost
introduced in solving Eqn (11) is under control.

A smaller value of h implies that, for a given time interval, we have a greater
number of discrete time steps, which can slow down the computation in some
cases. The value of ∆z determines the number of states of the resulting DTMC.
However, we stress that we discretize ZN (t), a uni-dimensional distribution (or
m-dimensional in the case we have m > 1 linear inequalities). As a consequence,
the number of reachable states with probability mass is generally limited and
under control. Obviously, if the number of molecules is large and ∆z extremely
small, then this is detrimental on performance.

3.7 Extensions

Remark 1. Our approach can be easily extended to target regions defined by
intersections of finitely many linear inequalities over species. That is, we con-
sider a set of linear predicates ZNj = Bj · XN (t) ∈ Ij , j = 1 . . . ,m with



m > 1, and ask what is the probability that during a finite time interval we
are in a state where each predicate is verified. In order to do that, we can
define B = (B1, ..., Bm)T ∈ Zm×|Λ|, a matrix where each row is a vector spec-
ifying a different linear combination. As a consequence, ZN = B · Y N is an
m dimensional Gaussian process and all the properties we used for the uni-
dimensional case remain valid in this extended scenario. The resulting DTMC
ZN,D is m−dimensional. However, note that m is generally equal to 1 or 2 in
practical applications (see Remark 2).

Remark 2. The method presented here can be extended to compute the proba-
bility of a non-nested until formula of CSL [3], that is, a formula of the type

P∼p[Ψ1U
[t1,t2]Ψ2].

This formula is satisfied if the probability of a path such that there exists
t ∈ [t1, t2] for which Ψ2 is satisfied and, for all t′ ∈ [0, t], Ψ1 is satisfied meets the
bound p. We restrict Ψ1, Ψ2 to linear inequalities over species. Computing this
probability, as explained in [21], requires computing two terms: (a) the proba-
bility of reaching a state between [0, t1) such that ¬Ψ1 is satisfied, and (b) the
probability of reaching a state during [t1, t2] where ¬Ψ1∧Ψ2 is satisfied. The for-
mer is simply reachability on ¬Ψ1. The latter can be computed by considering
reachability over the bi-dimensional system given by the joint distribution of the
linear combinations associated to ¬Ψ1 and Ψ2.

4 Stochastic Evolution Logic (SEL)

The method presented here permits an extension of the Stochastic Evolution
Logic (SEL) introduced in [12] for approximate model checking of CRNs based on
the LNA. Here, we extend the original formulation of the logic with an operator
for computing (time-bounded) probabilistic reachability. However, as explained
in Remark 2, more complex temporal behaviours could be introduced as well.

Let C = (Λ,R) be a CRN with initial state x0, then SEL enables evaluation
of the probability, reachability, variance and expectation of linear combinations
of populations of the species of C. The syntax of SEL is given by

η := P∼p[B, I][t1,t2] | F∼p[B, I][t1,t2] | Q∼v[B][t1,t2] | η1∧η2 | η1∨η2

where Q = {supV, infV, supE, infE}, ∼= {<,>}, p ∈ [0, 1], v ∈ R, B ∈ Z|Λ|,
I = [l1, u1] ∪ ... ∪ [lk, uk], k ≥ 1, such that, for i ∈ [1, k], [li, ui] ⊆ R ∪ [−∞,+∞]
is a finite set of disjoint intervals and [t1, t2] is a closed time interval, with the
constraint that t1 ≤ t2 and t1, t2 ∈ R≥0. If t1 = t2 the interval reduces to a
singleton.

Formulae η describe global properties of the stochastic evolution of the sys-
tem. (B, I) specifies a linear combination of the species, where B ∈ Z|Λ| is a
vector of weights defining the linear combination and I is a set of disjoint closed
real intervals. P∼p[B, I][t1,t2] is the probabilistic operator, which specifies the



average value of the probability that the linear combination defined by B falls

within the range I over the time interval [t1, t2]. Given PrX
N

B,I (t) = Prob{ω ∈
Path(XN , x0) |B · ω(t) ∈ I}, then, for t1 = t2, its semantics is defined as

XN , x0 |= P∼p[B, I][t1,t1] ↔ PrX
N

B,I (t1) ∼ p.
Instead, for t1 < t2 we have

XN , x0 |= P∼p[B, I][t1,t2] ↔ 1

t2 − t1

∫ t2

t1

PrX
N

B,I (t) dt ∼ p.

F∼p[B, I][t1,t2] is the new probabilistic reachability operator, which specifies the
probability that the linear combination of species defined by B reaches I during
[t1, t2]. Its semantics can be defined as

XN , x0 |= F∼p[B, I][t1,t2] ↔ Prob(ω ∈ Path(XN , x0)|B·ω(t) ∈ I, t ∈ [t1, t2]) ∼ p

The operators supE, infE, infV, supV , see [12], respectively, yield the supre-
mum and infimum of expected value and variance of the random variables asso-
ciated to B within the specified time interval. The quantitative value associated
to a formula can be computed by writing =? instead of ∼ p or ∼ v. For instance,
F=?[B, I][t1,t2] gives the probability value associated to the reachability property.
The following example illustrates that the P and F operators differ.

Example 1. Consider the following CRN, taken from [13], modelling a phospho-
relay network

τ1 : L1 +ATP →0.01 L1p+ATP ; τ2 : L1p+ L2→0.01 L2p+ L2;

τ3 : L2p+ L3→0.01 L3p+ L2; τ4 : L3p→0.1 L3;

with initial conditions x0(L1) = x0(L2) = x0(L3) = 50, x0(ATP ) = 150 and
all other species equal 0. Then, if we consider P>0.3[L3p, [40,∞]][0,10], which is
true if the average probability that L3p > 40 is greater that 0.3. Then, this is
evaluated to false. Instead, F>0.3[L3p, [40,∞]][0,10], which models the probability
of being in a state where L3p > 40 during the first 10 seconds, is evaluated as
true.

5 Experimental Results

We implemented Algorithm 1 in Matlab and evaluated it on two case studies.
All the experiments were run on an Intel Dual Core i7 machine with 8 GB
of RAM. The first case study is a Phospohorelay Network with 7 species. We
use this example to show the trade-off between the different parameters and the
molecular population. More precisely, we show that the accuracy of our approach
increases as the number of molecules grows, but can still give fast and accurate
results when the molecular population is not large. The second example is a Gene
Regulatory network. We use this example to show how our approach is more
powerful than existing approximate techniques, and is able to accurately handle
properties where existing techniques fail. We validate our results by comparing
our method with statistical model checking (SMC) as implemented in PRISM
[22]. In fact, for both examples, exact numerical computation of the reachability
probabilities on the CTMC is infeasible because of state space explosion.



5.1 Phosphorelay Network

The first case study is a three-layer phosphorelay network as shown in Example
1. There are 3 layers, (L1, L2, L3), which can be found in phosphorylate form
(L1p, L2p, L3p), and the ligand B. We consider the initial condition x0 ∈ N7 such
that x0(L1) = x0(L2) = x0(L3) = L ∈ N, x0(L1p) = x0(L2p) = x0(L3p) = 0
and x0(B) = 150. In Figure 1, we compare the estimates obtained by our ap-
proach for two different initial conditions (L = 100 and L = 200) with statistical
model checking as implemented in PRISM [22], with 30000 simulations and con-
fidence interval equal to 0.01. In both experiments we consider ∆z = 0.5.

(a) (b)

Fig. 1: Comparison of the evaluation of F[0,T ime][L3p > 80] (Fig 1a) and
F[0,T ime][L3p > 180] (Fig 1b) using statistical model checking as implemented in
PRISM and our approach. In Fig 1a, we used h = 0.1, ∆z = 0.5, and L = 100.
In Fig 1b, we considered h = 0.1, ∆z = 0.5 and L = 200.

In Figure 1a we can see that, if we increase the time interval of interest, the
error tends to increase. This is because, for L = 100, the LNA and CME do
not have perfect convergence. As a consequence, at every step of the discretized
DTMC, a small error is introduced. This source of error is present until we en-
ter the target region with probability 1. If we increase L this error disappears,
and the inaccuracies are due to the finiteness of h and ∆z. However, already for
h = 0.1 and L = 100, the LNA produces a fast and reasonably accurate approxi-
mation. In the following table we compare our approach and PRISM evaluations
for different values of L and h and ∆z = 0.5. In order to compare the accuracy
we consider the absolute average error, ||ε||1, and the maximum absolute error,
||ε||∞. ||ε||1 = 1

|Σ|
∑
n∈Σ |FY[0,n]−F

X
[0,n]]| and ||ε||∞ = maxn∈Σ{|FY[0,n]−F

X
[0,n]]|},

where Σ is the set of discrete times between 0 and 10, and FY[0,n] and FX[0,n] are the

evaluation of the particular reachability formula in the interval [0, n] according
to the LNA and PRISM.



Property Ex. Time h L ||ε||1 ||ε||∞
F=?[L3p > 80][0,T ime], Time ∈ [0, 10] 97 sec 0.1 100 0.0088 0.11
F=?[L3p > 180][0,T ime], Time ∈ [0, 10] 130 sec 0.1 200 0.0015 0.0217
F=?[L3p > 80][0,T ime], Time ∈ [0, 10] 28 sec 0.5 100 0.0381 0.24
F=?[L3p > 180][0,T ime], Time ∈ [0, 10] 39 sec 0.5 200 0.0289 0.14

The results show that the best accuracy is obtained for h = 0.1 and L = 200,
where h = 0.1 induces a finer time discretization, whereas the worst are for
h = 0.5 and L = 100. We comment that the numerical solution of the CME
using PRISM is not feasible for this model, and our method is several orders of
magnitude faster than statistical model checking with PRISM (30000 simulations
for each time point).

5.2 Gene Expression

We consider the following gene expression model, as introduced in [27]:

τ1 :→0.5 mRNA; τ2 : mRNA→0.0058 mRNA+ P ;

τ3 : mRNA→0.0029 W ; τ4 : P →0.0001 W ;

with initial condition x0 such that all the species have initial concentrations
equal to 0. We consider the property F=?[≥ 175][0,T ime], which quantifies the
probability that the mRNA is produced for at least 175 molecules during the
first Time seconds, for Time ∈ [0, 1000]. This is a particularly difficult property
because the trajectory of the mean-field of the model, and so the expected value
of the LNA, does not enter the target region. As a consequence, approximate
approaches introduced in [15] and [8], which are based on the hitting times of
the mean-field model, fail and evaluate the probability as always equal to 0.

Fig. 2: The figure plots F=?[mRNA ≥ 174][0,T ime]
for h = 1.85 and ∆z = 0.5. The x-axis represents
the value of Time and the y-axis the quantitative
value of the formula for that value of Time.

Conversely, our ap-
proach is able to evalu-
ate correctly such a prop-
erty. Figure 2 compares
the value computed by
our approach with sta-
tistical model checking
of the same property as
implemented in PRISM
over 30000 simulations for
each time point and con-
fidence interval 0.01. In
Figure 2 we consider h =
1.8 and ∆z = 0.5 and
demonstrate that our ap-
proach is able to correctly estimate such a difficult property. Note that, as the
mean-field does not enter the target region, for each time point the probability to
enter the target region depends on a portion of the tail of the Gaussian given by
the LNA. As a consequence, the accuracy of our results strictly depends on how



well the LNA approximates the original CTMC, much more than for properties
where the mean-field enters the target region. In the following table, we evaluate
our results for two different values of h and ∆z = 0.5.

Property Ex. Time h ||ε||1 ||ε||∞
F=?[mRNA ≥ 174][0,T ime], Time ∈ [0, 100] 298 sec 1.85 0.0075 0.022
F=?[mRNA ≥ 174][0,T ime], Time ∈ [0, 100] 152 sec 5 0.0147 0.13

6 Conclusion

We presented a method for computing (time-bounded) probabilistic reachability
for CRNs based on the LNA, which is challenging because the LNA yields a con-
tinuous time and uncountable state space stochastic process. As a consequence,
existing methods that rely on finite state spaces cannot be used directly and
discretizing the uncountable state space defined by the LNA will lead to state
space explosion. In order to overcome these issues, we considered reachability
regions defined as polytopes. Using the fact that the LNA is a solution of a
linear Fokker-Planck equation, and so a Gaussian Markov process, for a given
linear combination of the species of a CRN, we are able to project the original,
multi-dimensional Gaussian process onto a uni-dimensional stochastic process.
We then derived an abstraction in terms of a time-inhomogeneous DTMC, whose
state space is independent of the number of the species of a CRN, as it is de-
rived by discretizing linear combinations of the species. This ensures scalability.
Finally, we used our approach to extend the Stochastic Evolution Logic in order
to verify complex temporal properties. On two case studies, we showed that our
approach permits fast and scalable probabilistic analysis of CRNs. The accuracy
depends on parameters controlling space and time discretization, as well as the
accuracy of the LNA.
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